A law of the iterated logarithm for iterated random walks, with application to random recursive trees

Valeriya Kotelnikova ${ }^{1}$

Consider a general branching process (a.k.a Crump-Mode-Jagers process) generated by an increasing random walk whose increments have finite second moment. Let $Y_{k}(t)$ be the number of individuals in generation $k \in \mathbb{N}$ born in the time interval $[0, t]$. I shall discuss a law of the iterated logarithm for $Y_{k}(t)$ with fixed k, as $t \rightarrow+\infty$. As a corollary, I shall also present a law of the iterated logarithm for the number of vertices at a fixed level k in a random recursive tree, as the number of vertices goes to ∞.

The talk is based on the joint article [1] with Olexandr Iksanov (Kyiv) and Zakhar Kabluchko (Münster).

References

[1] O. Iksanov, Z. Kabluchko and V. Kotelnikova, A law of the iterated logarithm for iterated random walks, with application to random recursive trees. Preprint (2022) available at https://arxiv.org/abs/2212.13441

[^0]
[^0]: ${ }^{1}$ Taras Shevchenko National University of Kyiv, Faculty of Computer Science and Cybernetics, Ukraine, Kyiv. Email: valeria.kotelnikova@unicyb.kiev.ua

